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1. We have continued our study of higher order neural networks. The
superior processing power capacity and speed of the higher order
neural network has been demonstrated for many tasks including text
to speech, character recognition, noise removal, time series
prediction etc. Currently, we are applying it to the speech

] recognition problen.

! 2. We have constructed a neural network to learn the task of
stereopsis from random dot stereogram. The connection weights of
the network are computed analytically from the Hebbion learning
rule. The results show that the continuity and uniqueness
constraints first proposed by Marr and Poggio are learned
automatically.
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3. ~ Ve proposed a novel scheme (PSIN) to automatically build a neural

network while learning. The new scheme takes advantage of both
11 the parallel and sequential strategies to solve a pattern
4 classification or decision problemn. We optimize an entropy S
measure to encourage the network to extract the best feature first -
to classify the pattern., Preliminary test of this new schenme S
shows that PSIN performs superior than the back propagation scheme
in hard problems.

tde

"
v
3

Arnpe
'li.;trj) it

Publications

b 1. A Novel Net That Learns Sequential Decision Process, GC.Z. Sun,
Y.C. Lee, and H.H. Chen in *Neural Information Processing Systems'.. -~ T
4 SAREET ARCH (ATSC)

P 760 (1988) Editor D. Anderson. AIR ;ORCL OFF!CF oF (“(‘lr_NT‘ll;”‘ FASNS (

NPNCEOFTRANSMVHALTQl)wh\qd"nds
7‘4 Th’i-‘- tochn. oM raport has teen reu-ﬂ.w t(.l"
reamd for posis reesse pAW ATR 190-1¢.
b;;ﬁqni3'nﬂ“ﬂﬁsd.
oo tTPER .
crimation Divisied

T chrsa ind




-

S At

Dl

Learning Stereopsis with Neural Networks by G.Z. Sun, H.H. Chen,
and Y.C. Lee, Proceeding IEEE First International Conference on
Neural Networks, San Diego, California (1987), Vol IV, p. 345.

Parallel Sequential Induction Networks — New Paradigm of Neural
Network Architecture by G,Z, Sun, H.H. Chen and Y.C. Lee,
Proceeding ILEEE Second Internation Conference on Neural Networks,
San Diego (1988) vol 1, 489.




>

iy

whalh.

LEARNING STEREOPSIS WITH NEURAL NETWORKS
G. Z. Sun, H., H. Chen, and Y. C. Lee

Laboratory for Plasma and Fusion Energy Studies and
Department of Physics and Astronomy and
Institute for Advanced Computer Studies

Imiversitv nf Maryland
College Park, MD 20742

ABSTRACT

A high order recursive neural network is constructed to learn the task
of stereopsis from random dot stereograms. The connection weights of the
network are learned through Hebbian rule. To avoid the problem of over-
whelmingly large number of weights, we exploit the translational symmetry
and trained only a small local patch and later transported uniformly to the
whole network. Since the Hebbian learning is linear, the weights can be
calculated analytically. The results show that the continuity and the
uniqueness constraints first proposed by Marr and Poggio are learned auto-
matically.

INTRODUCTION

Neural network models have been demonstrated to be very effective in
computing perceptive problems such as vision, speech, and motor control.l
One of its main advantages is the ability to learn automatically to perform
a specific task by way of a learning algorithm.? 1In a single-layered per-
ception, the error correction learning rule is guaranteed of convergence if
a solution exists. In a multi-layered feed-forward network, back propaga-
tion of error messages 1s used to train the networks. These learuning

methods are generally nonlinear, making 1t hard to analyze the final
network to understand the working principle of the networks.

In this paper, we would 1like to study an example, namely, the
stereopsis of random dot images3 wherein a recursive network is used. We
would 1like to demonstrate that the algorithm for solving random dot
stereogram can be learned by the simple Hebbian rule. Since the Hebbian
rule involves neither error correction nor back propagation and 1is local
and linear, it allows us to calculate the connection weights analytically.
The result confirms the uniqueness and the continuity constraints that Marr
and Poggio* first postulated to be in the working principle of the
stereopsis network. Through Hebbian learning, these two constraints are
learned automatically. Furthermore, the weights learned are symmetrical
which ensures the convergence of the recursive network. The network we
used has five depth layers. FEach layer contains 100 x 100 = 18 pixels of
neuron cells. If fully connected, it would require 2.5 x 10° connection
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weights, a formidably large number. To reduce from this large number of
weights, we exploit the localness and the translational symmetry of the

stereopsis problem. We train a small patch of the network with pixel
size a x a (a < 11) and then transport it to the whole image plane. The
result is a high order recursive network with local connection weights
uniformly distributed in the network.

II. TRAINING OF THE NETWORK

The stereo vision is achieved by detecting the binocular disparity of
the two 1images observed by the two eyes. The random dot stereogram
demonstrated that the stereo perception is an early vision problem that
does not 1involve the high level task of recognition and identification of
visual objects. In Fig. 1(a) and (b) we show two random dot images of the
left and the right eyes. Each has 100x100 pixels with an equal
probability (v = 1/2) to be white and black. The actual three-dimensional
image, a five-layered cake, 1s shown in Fig. l(c). Our task is to train a
neural network to construct the three—-dimensional image surfaces from the
two monocular random dot images. Marr and Pogglo constructed a network
with connection weights designed from the two constraints, namely the
uniqueness constrain:s which says that in any given direction we see only
one 1mage surface and the continuous constraint that says a surface is
usually continuous. In this paper we are going to demonstrate that these
two working principles of stereopsis can be learned automatically by the
networks using Hebbian learning rule.

In order to proceed, we first choose the following conventions for
notations and representations.

(1) 1In the random dot images, a black dot is assigned the value +l
and a white dot -1.

(11) 1In each monocular 1lmage the probability for a dot to be black
is v.

(111) The maximum depth is an integer D.

(iv) The input to the network is a conjunction of the left and the
right monocular images (see Fig. 1(d)),

I

~

g0 = REDg g B R oo Ly g4k o S
x’y x'y X y

where k = (k_,k ) 1s the position vector of the pixel point on a single
monocular iﬁ%géﬂ and 1 = 1,2,...D is the. index for the different degth
level countered from the bottom (i=1) to the top (i=D). R and L denote the
right and the left monocular images respectively. Equation (1) implies
that the input is composed of all possible matches between the left and the
right monocular images including both the black and the white dots.
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(v) The sutput of the network also consists of five (D=5) layers of
planes with size 100 x 100. We let

S =

i’E if .

s (1,k) lies on a solution surface
-1 otherwise

Here the soluticr surface means the outline surface of the 3-D object

viewed from above (as shown in Fig. 1(c)) and s 1is a normalization factor

such that the total sum of all the components of the connection weight

would be zero if s = D - 1.

We then use the Hebbian learning rule to construct the weighrs
between Si K and Ij ey
' L3

r

W .. =) ST I . = Np<S
1,k53,K Zr L,k C3,k7 T PO,

K Ij’E,> s (2)

where the summation is over all possible pattern pairs of S and I, and N
1s the total number of patterns. P

For training patterns, we choose a small patch of size axa with a <<
100 to reduce the number of weights to a manageable size. The training is
done by dividing the patch 1into four frontal planes with two dividing
lines, one horizontal and another vertical. The position of these two

lines and the height of the four sub-patches are uniformly random.

To calculate the analytical weights, we note the following:

(1) ] =

1,k if , (3)

s (1,5) lies on the solution plane
1 otherwise

(i) (RL)i K =

~

1 if (4,k) lies on the solutign plane
1 with prob. p(l) = + (I-vg if not on (&)
-1 with prob. p(=1) = 2v(l-v) solution plane,

(111) 1f (i,k) is not on the solution plane, we have the ensemble average
2
<(RL)1,5> (1-2v)° , (5)
(iv) with the patch axa, two points (kx,k
on the same sub—plaue with the probability
1

P, = —— (a-l-|x|)(a-1-|y]) , (6)
d (a_l)z

y) atd (kx+x ’ ky+y) would lie

where we have assumed that (kx’k ) 1s at the center of the patch (an
approximation justified by the translational symmetry). To proceed, we
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consider two exclusive cases i = j and i # j.

(a) diagonal i = j,

ENTEND

m

<Si‘}3(RL)i’5+‘E> . (7

Since S can assume the value s with probability 1/D and the value -l
with probability (D-1)/D, we have

kKB ee” =5 5 C(RL); ker”o1k T S
(8)
D~1
" SRy s -,
Sktr i,k

when (i,k) lies on a solution plane, the probability that (i,k+r) is not on
any solution plane would be

(1-2 ) (1-1/D) ,

and we have

<(RL)1 k+r S
1,k°
= (I—Pd)(l—l/D)(l—Zv) +1 - (I—Pd)(l-l/D) .
Similarly, we have
<(RL) > = (-p) L+ 1 -La-p)l-2v)? (10)
“1,k+e’s, | ==l a’ D D d .
Finally, we have
= s+l - s=D+l 1y _ - -1
w1,5;1,5+5 = Np{D2 v(A-v)(D-1p, + == [1-4v(1-v)(1 D)]}. (11)
(b) 1 # 3. In this case (i,k) and (j, k+r) can not lie on the same

plane. If (i,k) lies on a solution plane, the probability for (j,k+r) to
be also on a solution plane is

1
Pp=g (L =P . (12)

On the other hand, 1f (1,k) is not on a solution plane, then the
probability that (j,k+r) would lie on a solution plane {is

1 1
Py = Py 57 * (I-Ry) 5 =5 [1+P /(D-1)] . (13)

Ul*‘




With these probabilities, we can calculate

- _ Ry
<(RL)J'-E+£>51 = =P+ (1-p)(1-2v) (14)
~0

~

and

<(RL) =P, + (1—P2)(l-2v)2 . (15)

. > __
Jaktr Si,k- 1 2

~

Therefore when 1 # j, we have

s+l
= S t—— a— +
wi’E; 5 k+r Np{ Dz 4u (1l v)Pd

s-D+1
D

N-tv(1-v)(1 - DI} . (16)

Combining Eqs. (11) and (16), we have for general i and j,

= s+l _ _

R G DIC PR

a7

s-D+1
D

1
N [1-4v(1-v)(1 - ] .

The second term in Eq. (17) can be ignored if we choose s = D - 1., Substi-
tuting the expression of P, from Eq. (6), we get

2

= AU ok -kt ) (am1- |k k" -
LA 5 7 (a-1-[k -k7])(a=1-[k ~kZ|)(D§ 1) (18)
~T T T (a-1)
where ky, is chosen as the center of a patch axa aud k’,k” run threugh

the whole patch. It is easily seen that this weight matrix 1% symmetrical
between i and j. This 1is a consequence of the traunslation and reflection
symmetry in our training patterns. The last factor in Eq. (18) also shows
that the weights between neurons on the same layer are excitatory while for
neurons cn different layers are inhibitory. A direct confirmation of the
continuity and the uniqueness constraint is proposed by Marr and Poggio.

III. CONVERGENCE THEOREM

Hopfield is the first to show the convergence of an asynchronous
symmetrical recursive network with the help uf a Liapunov function. In our
problem, the weights are symmetrical and we can implement the dynamics of
our network with two schemes, a) the maximum scheme and b) the threshold
scheme. Their performance 1is similar. As a matter of fact, in order to
enhance the stability of our result, we choose to add a forcing from the

input to our network which can bhe integrated into the convergence theorem
easily.

The maximum scheme evolves according to
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X = max [T oW,k e oxg J (19)
L1 §,k7 S bR K ‘
where ‘
{ 1 if y, = max(yj; j=1,...D) ‘
max (y,) = ( _ . s
1§1$D i 1 otherwise

0
and X is the input state of the neurons. Following Goles and Vichniac,5
we can’ show that this scheme is convergent with the help of the Liapunov

function,
t t+l t+l t
E, (X ,X = YOX;, W N S
3 ) e S ~
co (20)
t+l t 0
' i%k Ko " 207
where X% and xt*1 are the neuron states at time step t and t+l,

respectively. It is then straightforward to show that the updating

monotonically increases the Liapunov function (20) and therefore guarantees
its convergence.

The advantage of the maximum scheme is {its simolicity. It ensures
that the uniqueness constraint is satisfied strictly. However, since we
are interested in the learning of the network to automatically implement
the uniqueness constraint, we are also interested in the threshold scheme

which takes the mutual inhibition of the pixels along line of sight into
account. The threshold scheme evolves according to

t+l _ t 0
Xk " e[jik—wi»kzj'&’xj,h' toXy ot ], (21)

where 8 is the step function defined as

0
0
and v i{s a threshold value. This scheme is also ensured of convergence.

For synchronous_updating, the Liapunov function is very similar to Eq. (20)
and is given byS

IA vV

8(x) = {_} if :

t t+l t+l t
E (X" ,X = X W DS SR
¢ ) 1Xk i,k 1,k;ik7 5,k
'N
2
0 (22)

1,k + 1) .

t+l

+ ) <xi'5

+ xi ) (oX
ik Wk

[V-1s0

. -~ e ——— R
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Again, we can show that AE. > 0 strictly. Both of the maximum and the
threshold scheme have been implemented and show similar performance.

IV. STATIONARY STATES AND THE NUMERICAL IMPLEMENTATION

After proving the convergence theorem, the next question to ask lis
where would the netwecrk converge to? Unfortunately, the complete
discussion of the attractor states are very tedious and 1s not the main
interest of this paper. We would only state that the considerations of the
following questions help us to find the optimal choice of the few
parameters remain in our network, namely the threshold value, the strength
of the forcing by initial pattern, and the size of our training patch a.

The questions involved are:

(1) Are the internal cells statiounary? An internal cell is a pixel
cell whose immediate neighbors are occupied by cells with the same value.

(11) Are the cells at a boundary stationary? As one solution
surface meets another solution surfacae at a boundary, thils boundary mst

be stationary.

(111) rhe corner must be stationary. This 1s a tougher condition to
be met than (i1i).

(iv) 1isolated dots are false and should be eliminated.
These considerations lead us to the choice of 3 { a < 13,

We bhave run many numerical simulations of our networks with the above
a values. Typically, three or four iterations are sufficient to attain the
final stationary state (see Fig. 2). Sometimes, merely one or two itera-
tions already give an almost perfect result. The remaining iterations
serve only to the removing of a few isolated false spots. Among the
results obtained in terms of different size and weights, the one obtained
with a = 5 has the cleanest shape and sharpest corners.

We have also tested our network with 3-D images other than rectangles,
for instance, triangles and octagous. The learned weights generalize well
for these cases (see Fig. 3). We also tested the robustness of the network
by implementing the numerically acquired weights. The performance is as
good as those with the analytical weights.

V. CONCLUSION AND DISCUSSIONS

We demonstrated in this paper that using high order recursive network
the connection weights can be learned automatically from Hebb”s rule to
perform stereopsis eon random dot stereograms. The Hebb”s rule {s linear
that allows us to constiuct the weights analytically. The results showed
that the continuity and the uniqueness consraint first pronosed by Marr and
Poggio are learned automatically. The weights obtained are symmetrical and
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therefore guarantee the convergence of the network. Numerical implementa-
tions confirmed these predictions.

3.
4.
5.
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1 INTRODUCTION

It is well known that two-layered perceptron with binary connections but no
hidden units is unsuitable as a classifier due to its limited power [1]. It cannot
solve even the simple ezclusive-or problem. Two extensions have been pro-
posed to remedy this problem. The first is to use higher order connections
(2]. It has been demonstrated that high order connections could in many
cases solve the problem with speed and high accuracy {3], [4]. The repre-
sentations in general are more local than distributive. The main drawback
is however the combinatorial explosion of the number of high-order terms.
Some kind of heuristic judgement has to be made in the choice of these terms
to be represented in the network.

A second proposal is the multi-lavered binary network with hidden units
5]. These hidden units function as features extracted from the bottom input
ayer to facilitate the classification of patterns by the output units. In order
to train the weights, learning algorithms have been proposed that back-
propagate the errors from the visible output layer to the hidden layers for
eventual adaptation to the desired values. The multi-layered networks enjoy
great popularity in their flexibility.

However, there are also problerns in implementing the multi-layered nets.
Firstly, there is the problem of allocating the resources. Namely, how many
hidden units would be optimal for a particular problem. If we allocate too
many, it is not only wasteful but also could negatively affect the performance
of the network. Since too many hidden units implies too many frce param-
eters to fit specifically the training patterns. Their ability to gencralize to
noval test patterns would be adversely affected. On the other hand. if too
few hidden units were allocated then the network would not have the power
even to represent the trainig set. How could one judge beforchand how many
are needed in solving a problem? This is similar to the problem encountered
in the high order net in its choice of high order terms to be represented.

Secondly, there is also the problem of scaling up the network. Since the
network represents a parallel or coorperative process of the whole system,
each added unit would interact with every other units. This would become
a serious problem when the size of our patterns becomes large.

Thirdly, there is no sequential communication among the patterns in the
conventional network. To accomplish a cognitive function we would need
the patterns to interact and communicate with each other as the human
reasoning does. It is difficult to envision such an interacton in current systems
which are basically input-output mappings.

2 THE NEW SCHEME

In this paper, we would like to propose a scheme that constructs a network
taking advantages of both the parallel and the sequential processes.

We note that in order to classify patterns, one has to extract the intrinsic
featurcs, which we call attributes. For a complex pattern set, there may
be a large number of attributes. But differnt attributes may have different
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ranking of importance. Instead of extracing them all simultaneously it may
be wiser to extract them sequentially in order of its importance {6], {7]. Here
the importance of an attribute is determined by its ability to partition the
pattern set into sub-categories. A measure of this ability of a processing unit
should be based on the extracted information. For simplicity, let us assume
that there are only two categories so that the units have only binary output
values 1 and 0 ( but the input patterns may have analog representations). We
call these units, including their connection weights to the input layer, nodes.
For given connection weights, the patterns that are classified by a node as
in category 1 may have their true classifications either 1 or 0. Similarly, the
patterns that are classified by a node as in category 0 may also have their
true classifications either 1 or 0. As a result. four groups of patterns are
formed: (1,1), (0.0}, (1,0), (0.1). We then need to judge on the efficiency of
the node by its ability to split these patterns optimally. To do this we shall
construct the impurity fuctions for the node. Before splitting, the impurity
of the input patterns reaching the node is given by

I, = =Pl logP® — PllogP? (1)

where P} = N!/N is the probability of being truely classified as in category
1,and P§ = Ng§/N is the probability of being trucly classified as in category
0. After splitting, the patterns are channelled into two branches, the impurity
becomes

L= -P 3 P(j,DlogP(j,1) — P§ 3. P(j,0)logP(j,0)  (2)

J=0,1 1=0,1

where PP = NP/N is the probability of being classificd by the node as in
category 1, P§ = N}/N is the probability of being classified by the node as
in category 0, and P(j,1) is the probability of a pattern, which should be in
category j, but is classificd by the node as in category i. The difference

Al=1,-1, (3)

represents the decrcase of the impurity at the node after splitting. It is the
quantity that we seek to optimize at each node. The logarithm 1n the im-
purity function come from the information entropy of Shannon and Weaver.
For all practical purpose, we found the optimization of (3) the same as max-
imizing the entropy [6]

s =y s (S0 ?) o+ S+ Gy (4)
NN, N, NN No

where N, is the number of training patterns classificd by the node as in

catcgory i, N,; is the number of training patterns with true classification in

catcgory i but classificd by the node as in category j. Later we shall call the
terms in the first bracket S, and the second S,. Obviously, we have

N, = No, + Ny, t=0,1
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After we trained the first unit, the training patterns were split into two
branches by the unit. If the classificaton in either one of these two branches
is pure enough, or equivalently either one of S, and S; is fairly close to 1,
then we would terminate that branch ( or branches ) as a leaf of the decision
tree. and classify the patterns as such. On the other hand. if either branch is
not pure enough, we add additional node to split the pattern set further. The
subsequent unit is trained with only those patterns channeled through this
branch. These operaticns are repeated until all the branches are terminated
as leaves.

3 LEARNING ALGORITHM

We used the stochastic gradient descent method to learn the weights of each
node. The training set for each node are those patterns being channeled to
this node. As stated in the previous section, we seek to maximize the entropy
function S. The learning of the weights is therefore conducted through

as .
715‘—‘,_ (8)

Where 7 is the learning rate. The gradient of S can be calculated from the
following equation

AW, =

65 _ -1—[ NO] a\'n ( lvll )84\(" "
ow; - N a- )BW ow,
NE, avm Am al\m]
0 -2%7 NE oW, 1- N’ N, aw (6)
Using analog units
. 1
o= 1+exp(— %, W,IT) (7)
we have 20"

Furthermore, let 4™ = 1 or 0 being the true answer for the input patternr |
then

N

=;[M'+(1—i)(1—A')][j0'+(1—j)(1—0')] (9)

Substituting these into equation (5), we get

1Vll Nlo ﬁ)__i‘vi]or(l_or)lr (10)
J

W =23 [2ar(S0 4
A "Z[ S A R A R

In applying the formula (10),instead of calculating the whole summation at
once, we update the weights for each pattern iudividually. Mecanwhile we
update N;; in accord with equation (9).
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Figure 1: The given classification tree, where 8,,0, and 83 are chosen to be
all zeros in the numerical ezample.

4 AN EXAMPLE

To illustrate our method, we construct an example which is itself a decision
tree. Assuming there are three hidden variables a;, a3, a3, a pattern is given

by a ten-dimensional vector I, [, ..., Ijo, constructed from the three hidden
variables as follows

L = a+a; Iy = 2a;

L = 2a—a L = a3—a

I; = a3 —-2a Is = 2a, 4+ 3a,

Iy = a;+2a;+ 3a; Iy = 4a3-3aq

Is = 5a, —4da, Lo = 2a +2a; + 2aa.

A given pattern is classified as either 1 (yes) or 0 (no) according to the
corresponding values of the hidden variables ay, a;,a3. The actual decision
is derived from the decision tree in Fig.1.

In order to learn this classification tree, we construct a training set of 5000
patterns generated by randomly chosen values ay, az,a; in the interval -1 to
+1. We randomly choose the initial weights for each node, and terminate

ey —~ "_1"1@‘;'(/7“3:‘.3:"”

R

N, M-
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Figure 2: The learned classification tree structure

a branch as a leaf whenever the branch entropy is greater than 0.80. The
entropy is started at S = 0.65, and terminated at its maximum value § =
0.79 for the first node. The two branches of this node have the entropy
fuction valued at 5, = 0.61,5; = 0.87 respectively. This corrosponds to
2446 patterns channeled to the first branch and 2554 to the second. Since
Sz > 0.80 we terminate the second branch. Among 2554 patterns channeled
to the second branch there are 2519 patterns with true classification as no and
35 yes which are considered as errors. After completing the whole training
process, there are totally four nodes automatically introduced. The final
result is shown in a tree structure in Fig.2.

Tke total errors classified by the learned tree are 3.4 % of the 5000 trainig
patterns. After trainig we have tested the result using 10000 novel patterns,
the error among which is 3.2 %.

5 SUMMARY

We propose here a new scheine to construct neuvral network that can au-
tomatically learn the attributes scquentially to facilitate the classification
of patterns according to the ranking importance of each attribute. This
scheme uses information as a measure of the performance of each unit. It is

"A‘.-w“,-,g} St iy i.m.\lq-ki‘if:ﬁn.;,{u.-iv b rm S b ST

%

kol
Nowe

R T ere B A o o o S S




766

self-organized into a presumably optimai structure for a specific task. The
sequential learning procedure focuses attention of the network to the most
important attribute first and then branches out’to the less important at-
tributes. This strategy of searching for attributes would alleviate the scale
up problem forced by the overall parallel back-propagation scheme. It also
avoids the problem of resource allocation ¢ countered in the high-order net
and thie raulti-layered net. In the example we showed tlie performance of the
new method is satisfactory. We expect much better performance in problems
that demand large size of units.
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ABSTRACT -

We present here a new scheme to automatically construct a neural network ar-
chitecture that takes advantage of both the parallel and sequential strategies to
solve a pattern classification or decision problem. The new scheme optimizes an
entropy measure to train nodes that extract attributes from the training patterns.
The sequential extraction of attributes with ranking order could alleviate signifi-
cantly the scale up problem of an all parallel network. Examples of decision tree
problems demonstrate amply the superior performance of PSIN (Parallel Sequential
Induction Network) against the usual back propagation procedure in multi-layered

networks.

1 Introduction

When we make up the decision on a certain task, usually we have to evaluate a
number of factors called attributes here. These attributes, in general, have different
importance in helping us to make up the decision. As a matter of fact. some of the
attributes are independent of each other, and can be evaluated at the same time,
i.e. in parallel, while other attributes may have to wait until some preliminary
decision based on more important attributes on a subtask has already been made.

This combination of parallel and sequential strategies in the decision processes can




be very efficient indeed [1],{2]. On the other hand, we note that the neural network
studied so far employs mostly the parallel strategy [3]. These are just input output
mappings, with the neural network serving the role of a nonlinear mapping function.
There are two major limitations of this approach. First, it is difficult to identify
the proper network structure for a given task. Second, the scaling up problem and
the associated low learning speed are serious drawbacks of these networks. These
limitations could be alleviated by using a new scheme proposed in this article [4]
which we call the parallel sequential induction network ( PSIN ). PSIN takes advan-
tage of both the parallel and sequential strategies in solving a problem. It consists
of many nodes that would classify the incoming patterns into a few subcategories.
Each node in PSIN is itself a neural network with one or more output neurons. It
is important to notice that we do not expect a single node alone to accomplish the
entire decision or classification job. It is the combination of many such nodes that

would complement each other and in the end coorperatively get the job done.

2 The parallel sequential induction network

In a conventional neural network, train-
ing { or testing) patterns are presented
to an input layer and the results read off
from the output units. The adaptation
of the connection weights are the conse-
quence of all the training patterns because
of the overall parallel strategy. However,
it can be seen that this strategy may not

be the best for problems represented by a

multi-branchcd decision tree. An example
is shown in Fig.l., where a,,a,, a3, ... are
attributes to be tested at the correspond-

ing nodes 1. 2, 3, ... . Fig. 1

Suppose there are only two pattern classes yes and no. For an input pattern, if
its test result in node 1 is positive, it is channeled to the node 2 to test for attribute
az. If the result is again positive we classifv the pattern as yes and so on. We note
that in order to classify a pattern, not all attributes are tested ( or relevant). For
some patterns a, and a; are the determinative attributes and aj is irrelevant. But

for other patterns a; and a3 are important and a, is irrelevant.

. m b e



If we expect a three laycred network to be able to extract automatically the
three attributes a,,a,, and a3, we are actually assuming that the input patterns
are uniform in their regularity which is however not true. This problem would get
worse dramatically as the depth of the decision tree is increased. The number of
relevant attributes become much less than those irrelevant and their voting power
in a decision process could be swamped easily by noise signals from those irrelervant

attributes in an all parallel arrangement.

To remedy this problem, or to recognize that some attributes are important for
a fraction of the patterns but not at all for others, we propose the parallel sequential
induction network. The PSIN divides the task of classification of patterns into steps.
The first step is to construct a node that extract the most important attributes for
the largest fraction of patterns from all the input patterns. We use information
entropy to measure the quality of this node. After training, we expect the node
to do its best to classify the patterns. However, usually what the first node could
accomplish is only to purify the patterns in each branches. We set a criterion for
the purity. If the purity in a branch is lower than the criterion, we use the subset
of patterns that were channeled into the branch by the first node to train another
node. We again maximize the information gain and purify the classification of the
subset of patterns. This procedure of branching and purification is continued until

a satisfactory performance is achieved.

3 Training of nodes

The objective of a node is to purify the classification of the patterns that come to
this node. The purity of the patterns are measured by an information function.
Before entering the node, we assume there are N+ + N~ = N number of patterns.
where N'* is the number of yes patterns and N~ is the number of no patterns. The
information entropy function ( or impurity function) that characterizes the mpurity
of these patterns is given by

1 N*
AR

<

Sy = (1)

using the Shannon-Weaver entropy. In practice. we approximate the above with a

5 = ( )2.
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A node is in principle a neural network by itself. It consists of an input layer to
which the input patterns are presented and an output layer that may contain one
or more output units. Since one of the strategies of PSIN is to relieve the burden
of classification task on a single network to a series of smaller networks ( or nodes),
each node of PSIN may be constructed using the simple perceptron architecture
instead of other more complex networks. However, we should note that the training
of the connection weights in this perceptron-like node is not the error correction

scheme.

A node consisting of n output neurons will channel the patterns into 2" possible

branches. The impurity or entropy function after the classification by the node is

given by
+ : :
1 (le,-,,..,-,,> + (*\'nn...h.>
Sa = v Z \r (3)
‘ 2-In Y 5152.00n
where j; (= 0 or 1) is the quantized output of the i, neuron, N} is the number

Y UJ132-0n
of yes patterns channelled into the branch with 7,4 .neuron having the quantized

output 7,(z = 1,2,...,n). The information gain or the increase of purity by the node
1s then

AS=5,-S.. (4)

Since the node cannot change S,, the trainning can only alter S, and we adapt the

weights to maximize S,.
It is easy to show that

AS = _2_ Z _\']4& 2A \Y+ ]\YJszmJ'n 2A N~ .-)
- \ N T :\— N neanls (5)

/
N N22-0n T J1J2dn J122:-20n

Note also that

N n n
AN = 2-4'{H[jk02+(1 -1 aom}Z o
=1 /11

k=1

(21 — DAO;
+ (1 =01 = 0p)
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and

n

N n y
. ' . o 4 (27, — DAOT
AN = 1-4 Ol +(1 = 3.)(1 = 0" _ —
T 2( ){g[“ =g “)1};]10{+(1—11)(1—0H
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where 4" = 0 or 1. representing yes or no respectively. is the true classification of

the pattern r and O] is the analog output of the [, neuron for the pattern r. We

have
. 1

© l+exp(= 3, Wy,

]
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and 50"
290 _ o -0y 0
Therefore, a stochastic gradient descent algorithm can be constructed with
oS
W, = n—
alla = g,
2n { NT. N
- =2 24" JiJadny 'JxJz Jn )2
jv Jlg:ln [ (jvflh---jn ) (1\ J132.dn ]
e . (27, — 1)O«(1 = Oy)
x Jk0k + (1 = j)(1 = Ok)]= 4 I 10)
1:1;[1[ «O0k + (1 = i )( k)]J.'O.'-*-(l 0ok (

where 7 is the learning rate and the summation over training patterns is dropped.

4 Result

We constructed a few examples and tested them with the PSIN against the back
propagation on a three lavered net. PSIN had proved to be superior than back

propagation in all these cases.

These examples use three attributes constructed from ten input units

ay = v+ 1.5vz +0.5v3 + 0.4v4 + 0.3vs + vg — vr + 2vg — vg + 0.920
a, = 0.101 - 0.21'2 + 0.31)3 - 0.41/‘4 + 0.51)5 - 0.5 - 0.41)7 - 0.31‘5
.+0.2U9 - 0.1U10

a3 = U2+ Vgt v+ Ug+ Uyo

All these are analog units. The componets of patterns v;, 7 = 1 to 10 are generated
randomly and uniformly between -1 and 1. In learning these cases, we use 5000
randomly generated training patterns. After learning we use another set of 5000

novel patterns to test the result.

(1) Second Order XOR Problem

This problern is represented in the decision tree in Fig.2. Using a node with single
output neuron, PSIN cannot improve the purity of this node with any significant
amount. This is expected because we know that XOR problem cannot be solved by

perceptron with a single output unit. However. if we use two output neurons in the
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node, then immediately the PSIN learned the problem in only 12 seconds cpu time

on a Cray-XMP with an accuracy of 99.85% out of 5000 novel testing patterns.
On the other hand, using a three layered

network with back propagation, we found
the results depend significantly on the
number of hidden neurons. Using two hid-
den neurons, the error is as high as 25.67%
after a trainig of 10 seconds cpu time. The
result of three hidden neurons do not show
improvement. The error is still 25.98% af-
ter a.7.2 seconds training time. Increasing
the hidden neuron number to 10, the er-
ror is reduced to 2.25% which is still 15

times worse than the PSIN result and the

training time is 69.7 seconds or about Fig. 2
seven times longer than the PSIN method.
(i1). Third Order XOR

This problem is represented in the deci-

sion tree in Fig.3. The PSIN approach

starts from the premise that the problem

may be solved using a node with a sin-

gle output neuron. This being impossi-

ble, the program automatically increases

the output neuron number in the node

by one to try to improve its information

gain. In the end, a node with three output

neurons solved the problem with an accu-
racy of 98.9%. The cpu time including all Y NNYN YY N
the computations from one neuron node
to three neuron node used is 39 seconds

on Cray-XMP. If we knew before hand Fig. 3

that we should use only three neuron node, then this time would be cut to at least
a half. On the other hand, the automatic search for the right number of neurons to

be included in a node is also one of the desirable feature of the PSIN approach

The same problem run on a three layered network with back propagation has

an error of 20% for three hidden neurons, 4.6% for six hidden neurons and the cpu
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time spent is already 44.5 seconds. Increasing the hidden neurons to 10 results in
a higher error rate of 5.5 ~ 7% and the cpu time needed is around 70 seconds. We
could not reduce further the error of back propagation scheme by including more
hidden neurons.

(ii1). A Third Example

As another example, we consider the de-
cision tree in Fig.4. The PSIN approach
automatically formd a two-node struc-
ture to solve this problem. The structure
closely resembles the decision tree. The
first node consists of one output neuron
and the second consists of two output neu-
rons. The network trained has an error
rate of 0.75%. The time spent is 11.73

seconds. The back propagation scheme

on a three layered net with three hidden
neurons has an error of 7.45%. The time

spent is 22.7 seconds. Fig. 4

5 Conclusion and discussion

In this paper, we have presented a scheme called Parallel Sequential Induction
Network to construct automatically a tree of neural network nodes. Each node is
trained tv classify patterns channeled to it by a previous node. A stochastic gradient
descent algorithm is presented to optimize the information gain (or the reduction
of the impurity in the pattern sets) of the node. The PSIN scheme has been tested
on a few decision tree problems and show a much superior result than the three

lavered network with hidden neurons and back propagation training.

We expect that for complex decision problems the combined parallel and sequen-
tial strategy would significantly alleviate the scale up problem for the all parallel
multi-layered network. Since the scheme automatically search for the best organi-
zation of nodes and learned automatically the weights in each node to determine
the important attributes, it can be very useful in many real life problems.
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